
Automated Configuration Generation for a Full-Mesh VPN

Cisco ASA device configuration involves the endless repetition of a small number of key pieces of information; a group of 
devices which participate in a fully-meshed VPN will have configurations which are very similar, with a few important 
details which must be properly reciprocated between peers. Sitemesh automates this process by expanding a template to 
generate a matching set of device configuration files.

Syntax

A sitemesh template is a flat text file with two basic declaration types: lines, which are a simple line of text, and blocks, 
which are multiple lines enclosed by braces. Any given keyword must be unique within a device section; with some 
exceptions, keywords must be unique within the enclosing block. Note that the parser is simple-minded, so a block must be 
identified by exactly two words, with the open-brace on the same line.

Comments and blank lines will be ignored, where “comment” is any line which begins with any of octothorpe (#), 
semicolon (;) or double-slash (//). Comments that do not begin a line will have strange effects.

Words which are not expanded by sitemesh will (usually) be passed through to the generated configuration. Because 
keywords must be unique, a semicolon will be expanded to multiple instances of the keyword; for example, “terminal width 
120; pager 40” becomes “terminal width 120” and “terminal pager 40”. Some blocks require multiple key-value pairs; these 
use a notation such as “hash=sha encryption=3des”.

The magic word exit causes all processing to stop; this feature can be used to keep arbitrary notes, definitions for spare 
sites, etc, with the template. To insert a block of arbitrary native configuration, use the word verbatim, which takes as its 
one argument the word which indicates the end of the block.

Fatal errors will cause sitemesh to exit with a list of problems. Otherwise, one or more configurations are generated, along 
with a list of notices and/or warnings. While there is a great deal of sanity-checking logic, sitemesh is very “trusting”, so it 
is possible to generate a bad configuration; this will usually include a set of “strange” warnings.

Site

A site begins with the site keyword; parts of the template before the first site are used as globals for all sites. Every site must
contain at least one device; this keyword triggers the creation of a configuration file. The supernet (shortest prefixes which 
define this site) and tunnel (crypto-map name) keywords are required for any site which will support VPN access. 

The optional deviceflags keyword is used to enable special features. Setting this option to “ios” will cause sitemesh to 
generate a stub of IOS configuration for this site, rather than the default ASA syntax. By default, “pre-8.2” style ASA 
configuration syntax is used; to enable new “8.3 and above” syntax, set deviceflags to “objectnat”.

Globals

Default values can be declared before the first site; these will generally be merged with the equivalent values in the site 
block. The default blocks can only be declared as global; the windows-dc and windows-map blocks are declared with the 
name default in the global scope.

Because sitemesh is a multi-pass compiler, forward references are permissible, for instance when declaring a multi-site 
supernet with sites that haven't (yet) been defined.

Some options do not make sense as globals; a few will generate errors, the rest are silently ignored.

Networks

A basic network consists of one or more CIDR address prefixes, each listed with the address keyword, all of which will be 
listed in an object-group declaration named site_networkname_net. If this network has a physical interface, the keywords 
interface, security-level, and description are passed through and a nameif directive is generated; if the interface unit number 
contains a period, the vlan directive is added, and the parent interface is automatically configured as a trunk.



A network may belong to one or more netgroups by means of the group keyword; these groups are named nets_groupname,
and are used as the destination addresses in an access-list.
Defaults for each network may be declared with a default block in the global scope. Site-specific keywords will generally 
override these defaults, with two exceptions: a more-specific nat interface statement will replace a default nat 1 interface, 
and any default access is appended to the site-specific access.

A default route can be specified with the default keyword; this has the side effect of flagging this interface as “outside” 
(regardless of its actual name) for VPN tunnels and exposed servers.

The access keyword may be specified more than once and will generate an access-list named in_networkname which is 
applied as an inbound access-group for that interface. One of the keywords permit, deny, or block (inverted deny) must 
follow access, after which a netgroup is specified, with an optional port. If the network block contains the strict keyword, 
this access-list will specify this network for the source, otherwise a source of any is used.

Outbound access-lists are generated with the block keyword, which always adds an explicit permit any at the end; these are 
generally used to prevent “leakage” of private address space at the egress interface.

The nat and global keywords are passed to the generated configuration and behave as expected; for the nat keyword, valid 
arguments are any, interface, and nonat, where interface is expanded to “the address and netmask of this interface”.

Dialup VPN configuration is generated by including the presharedkey keyword. To restrict the VPN access with a split-
tunnel, include the split keyword and specify a supernet; the split-tunnel-policy defaults to tunnelspecified unless changed 
with the splittunnel keyword. Many VPN-specific keywords are passed through to the device configuration.

When declaring additional supernet blocks, IP addresses or names can be used; names must either be other supernets, or 
networks in the local scope.

Servers

A server is a named machine which generates an object-group declaration site_machinename_host. Like networks, servers 
may belong to one or more netgroups as enumerated in the group keyword.

Exposed servers are configured with the public keyword, which creates a static NAT to the address. The outside keyword 
lists the services to be provided; these are translated into an access-list (named outside_servicename) on the “outside” 
interface.

Services

A service consists of one or more TCP or UDP port numbers which will be listed in an object-group declaration named 
port_servicename. Three keywords are understood in a service block: type, which must be “tcp”, “udp” or “tcp-udp”, port, 
which is any valid port number, and include, which inserts another service definition into this one.

Options

Most options blocks contain device-native statements which are passed through to the generated configuration; these will be
merged with a corresponding global block. Where an options block uses the key=value notation, these will be expanded into
a multi-line stanza; for options isakmp, numbered keywords will generate isakmp policy statements, with defaults inherited 
from “policy 0”.

Defaults listed in options interface will be applied to all physical interfaces.

The ipsec and dynamic-map blocks are similar to options blocks, except that the blockname is used as a map name.

For ssh and telnet, the allow keyword lists supernets for which ssh access should be allowed. Each device configuration will
omit its own supernet unless the deviceoption “sshlocal” or “telnetlocal” is set. The network keyword lists one or more local
networks for which access should be allowed; address specifies an IP network for which access should be allowed.



LAN Tunnels

A tunnel block creates a tunnel between two sites. Because sitemesh generates the reciprocal configuration, only one end of 
the tunnel needs to be specified. The key keyword specifies a pre-shared key to be used for the tunnel. Sequence numbers in 
the generated crypto-map will be automatically created unless deviceflags localcryptomap is set, in which case the number 
in the map keyword will be used.

Authentication

The username block is passed through to the device configuration.

VPN users can be validated against a Windows Active Directory domain by means of the windows-dc and windows-map 
blocks, each of which will inherit defaults from a matching global block named default. The windows-dc block describes a 
Domain Controller; the host keyword is matched to a network, and all others are copied into an aaa-server definition. The 
windows-map block defines a mapping of AD user groups to VPN policy groups; here, the suffix keyword is used for simple
expansion of all other keywords in the block.

IOS Devices

Enabling deviceflags ios causes a partial IOS-style configuration to be generated for the respective site. Access-lists for the 
crypto-map networks will be numbered from 140; these may each be overridden by specifying a rule keyword in the tunnel 
block. Also, map declarations are always used for local tunnel blocks, even when localcryptomap is not set.

Two access-lists are created for the crypto-map access; these can be configured with the tunnelaccessin and tunnelaccessout
keywords, which accept an optional access-list number followed by an IP address and zero or more port numbers.

Note that IOS support is not robust; this feature should be used for small leaf nodes, with all tunnels defined on the IOS site.

ASA Devices

Enabling deviceflags objectnat generates “modern” ASA 8.3+ configuration for the respective site: outside-facing access-
lists use internal addresses, the new nat syntax is used, and VPN statements are ikev1. Future releases will support ikev2 
and DAP.



Example

Below are some configuration fragments along with a list of corresponding ASA statements. Generally, a sitemesh template 
implies any and all relevant ASA configuration. 

site utah
nonat 10.10.0.0/16 192.168.0.0/18

(sets the global site prefix to utah)
access­list nonat (for all combinations of these nets)

network dmz {
interface Ethernet1
address 192.168.15.1/24
security­level 10
group staging
nat 0 nonat
nat 50 interface
access deny unlikely
access permit any
block unlikely

}

object­group network utah_dmz_net
interface Ethernet1
object­group network nets_staging
access­list in_dmz
access­group in_dmz in interface dmz
access­list out_dmz
access­group out_dmz out interface dmz
nat 0 access­list nonat
nat 50 192.168.15.0 255.255.2555.0

network remote {
address 192.168.0.0/22
presharedkey vpn­secret­key
access permit corp
access deny unlikely
split utah

}

object­group utah_remote_net
ip local pool ip_remote
access­group in_remote
tunnel­group remote
group­policy remote

tunnel california {
key secret­key

}

access­list location_california
crypto map
tunnel­group

server webserver  {
address 192.168.1.0/24
public 172.29.29.9
outside web

}

object­group network utah_webserver_host
object­group network utah_webserver_public
object­group network outside_web


